Odborníkům trvalo stovky let, než odhadli hmotnost Země, a dodnes neexistuje shoda na přesném čísle.
Je velmi obtížné vypočítat přesnou hmotnost Země. Foto: Science Times
Země obsahuje vše od pevných hornin a minerálů až po miliony živých organismů a je pokryta nespočtem přírodních i umělých struktur. V důsledku toho neexistuje přesná odpověď na otázku, kolik Země váží. Hmotnost Země závisí na gravitační síle, která na ni působí, což znamená, že by podle Live Science mohla vážit biliony kilogramů nebo vůbec nic.
Podle NASA je hmotnost Země 5,9722 × 10⁻²⁴ kg, což odpovídá přibližně 13 kvadrilionům egyptských pyramid Rachefova (každá pyramida váží 4,8 miliardy kg). Hmotnost Země mírně kolísá v důsledku kosmického prachu a plynů unikajících z atmosféry, ale tyto malé změny planetu neovlivňují po miliardy let.
Fyzici z celého světa se však na výše uvedeném čísle zatím neshodli a proces výpočtu není snadný úkol. Protože je nemožné umístit celou Zemi na váhu, musí vědci k výpočtu její hmotnosti použít triangulaci.
První složkou měření je podle Stephana Schlammingera, metrologa z Národního institutu pro standardy a technologie, zákon univerzální gravitace Isaaca Newtona. Všechno, co má hmotnost, má gravitační sílu, což znamená, že jakékoli dva objekty na sebe budou vždy působit silou. Podle Newtonova zákona univerzální gravitace lze gravitační sílu mezi dvěma objekty (F) určit vynásobením příslušných hmotností objektů (m₁ a m₂), vydělením druhou mocninou vzdálenosti mezi jejich středy (r²) a následným vynásobením gravitační konstantou (G), která je F = Gx((m₁xm₂)/r²).
Pomocí této rovnice mohli vědci teoreticky změřit hmotnost Země měřením gravitační síly planety na objekt na jejím povrchu. Problém však byl v tom, že nikdo dosud nevypočítal přesné číslo pro G. V roce 1797 zahájil fyzik Henry Cavendish Cavendishův experiment. Pomocí objektu zvaného torzní váhy, který se skládal ze dvou rotujících tyčí s připojenými olověnými kuličkami, Cavendish zjistil gravitační sílu mezi nimi měřením úhlu na tyčích, který se měnil, když byla menší kulička přitahována k větší kuličce.
Cavendish, znal hmotnosti a vzdálenosti mezi koulemi, vypočítal G = 6,74 × 10−11 m³ kg–1 s–2. Dnes Datový výbor Mezinárodní rady pro vědu určuje G = 6,67430 × 10−11 m³ kg–1 s–2, což se jen nepatrně liší od Cavendishova původního čísla. Vědci poté použili G k výpočtu hmotnosti Země s využitím známých hmotností jiných objektů a odvodili číslo, které dnes známe jako 5,9722 × 10−24 kg.
Schlamminger však zdůrazňuje, že ačkoliv Newtonovy rovnice a torzní váhy jsou důležitými nástroji, jejich měření jsou stále náchylná k lidským chybám. Během staletí od Cavendishova experimentu různí vědci měřili G desítkykrát, pokaždé s mírně odlišnými výsledky. I když jsou rozdíly nepatrné, stačí ke změně výpočtů hmotnosti Země a k zmatení vědců, kteří se snaží toto číslo změřit.
An Khang (podle Live Science )
Zdrojový odkaz
Komentář (0)